Hoe lang zou het duren om naar Kepler-22 te reizen?

Kepler-22 is een zonachtige ster op 635 lichtjaar afstand in het sterrenbeeld Zwaan. Zijn planeet, Kepler-22b, was de eerste bevestigde planeet in de bewoonbare zone die werd ontdekt door de Kepler-missie.

Afstand 635 lichtjaar
Type Ster Yellow dwarf (G5V)
Sterrenbeeld Cygnus
Schijnbare Magnitude 11.66

Tijddilatatie Rekenmachine

Het ruimteschip versnelt continu gedurende de hele reis. Realistisch voor ionenmotoren of theoretische voortstuwing.

Afstand tot Kepler-22
Snelheid vs Tijd
Deze grafiek toont hoe snel je versnelt naar een fractie van de lichtsnelheid.
Afstand vs Tijd
Toont de afgelegde afstand (in lichtjaren) in de loop van de tijd.
Tijd Reiziger vs Waarnemer
Toont hoe de tijd ervaren door de reiziger verschilt van de tijd op Aarde.
Energie vs Afstand
Toont de (vereenvoudigde) energiebehoeften voor het onderhouden van relativistische reizen.
Doppler Effect vs Tijd
Toont hoe het Doppler effect de waargenomen golflengten verandert.
Snelheid vs Afstand
Toont hoe je snelheid verandert naarmate je verder van je startpunt reist.
Lorentz Factor vs Tijd
Toont hoe de Lorentz factor (γ) groeit met toenemende relativistische effecten.
Eigen vs Waarnemer Afstand
Toont hoe afstandsmetingen verschillen tussen het referentiekader van de reiziger en de waarnemer.

Feiten over Kepler-22

Bekend om: First confirmed exoplanet in habitable zone by Kepler mission

Frequently Asked Questions

Hoe lang duurt de reis naar Kepler-22?

Met de lichtsnelheid zou het 635 jaar duren om Kepler-22 te bereiken. Bij constante versnelling van 1g met vertraging zou een reiziger ongeveer 115 jaar ervaren.

Wat maakt Kepler-22b bijzonder?

Kepler-22b was de eerste planeet die door de Kepler-missie werd ontdekt die in de bewoonbare zone van een zonachtige ster draait. Een jaar op Kepler-22b duurt 290 Aardse dagen.

Hoe Deze Rekenmachine te Gebruiken

Deze tijddilatatie rekenmachine laat je de afstand in lichtjaren en de versnelling in m/s² invoeren om te zien hoe tijddilatatie je reis beïnvloedt. Het toont de verschillen tussen reiziger- en waarnemertijd, maximale snelheid, energiebehoeften, Doppler effect, Lorentz factor, en hoe afstanden variëren tussen referentiekaders. Grafieken verschijnen na de berekening.

Resultaten

  • Tijd van de Reiziger: Hoeveel tijd de persoon op het ruimteschip ervaart
  • Tijd van de Waarnemer: Hoeveel tijd er verstrijkt op Aarde tijdens de reis
  • Maximale Snelheid: De hoogst bereikte snelheid, als fractie van de lichtsnelheid

Interactieve Grafieken

  • Snelheid vs Tijd: Hoe snel je versnelt richting de lichtsnelheid
  • Afstand vs Tijd: Hoe ver je hebt gereisd in de loop van de tijd
  • Tijd Reiziger vs Waarnemer: Vergelijkt het verstrijken van tijd tussen Aarde en ruimteschip
  • Energie vs Afstand: Hoeveel energie nodig is naarmate je verder reist
  • Doppler Effect vs Tijd: Hoe lichtgolflengten veranderen tijdens je reis
  • Snelheid vs Afstand: Je snelheid op verschillende afstanden
  • Lorentz Factor vs Tijd: Hoeveel tijddilatatie toeneemt met snelheid
  • Eigen vs Waarnemer Afstand: Hoe afstandsmetingen verschillen tussen referentiekaders

Wat is Tijddilatatie?

Tijddilatatie is een effect uit Einsteins speciale relativiteitstheorie. Hoe sneller je beweegt, hoe langzamer de tijd voor jou verstrijkt vergeleken met iemand die stilstaat. Bij 90% van de lichtsnelheid verstrijkt de tijd ongeveer 2,3 keer langzamer voor de reiziger dan voor iemand op Aarde.

Wat is de Tijddilatatie Formule?

De Tijddilatatie Formule is:

t' = t / √(1 - v²/c²)

Where:
t' = tijd gemeten door de waarnemer (op Aarde)
t = tijd ervaren door de reiziger
v = snelheid van de reiziger
c = lichtsnelheid (299.792.458 meter per seconde)